Напишем:


✔ Реферат от 200 руб.
✔ Контрольную от 200 руб.
✔ Курсовую от 500 руб.
✔ Решим задачу от 20 руб.
✔ Дипломную работу от 3000 руб.
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Общая характеристика техногенных опасностей

 На основе научного, системного подхода будут рассмотрено нормирование техногенных опасностей при проектировании и эксплуатации технических систем (машин, оборудования), технологических процессов и производственных помещений.

Техногенные опасности – это опасности, которые возникают в процессе функционирования технических объектов по причинам, связанным  с деятельностью человека, обслуживающего эти объекты.

 По природе воздействия на человека на рабочем месте техногенные опасности нормируются соответствующими ГОСТами и подразделяются на пять групп (см. табл. 1.2): механические, физические, химические, биологические и психофизиологические.

Группа механических факторов возникает из-за неисправностей и дефектов в технических системах, неправильного их использования. Неисправности машин и нарушения режимов работы технических систем приводят к возникновению травмоопасных ситуаций. Эта группа факторов действует спонтанно и кратковременно в ограниченном пространстве, и возникают при катастрофах и авариях, при взрывах и внезапных разрушениях  зданий и сооружений.



Группа физических факторов в свою очередь подразделяется на следующие подгруппы: температура поверхностей оборудования, материалов; температура, влажность, подвижность воздуха, его ионизация, запылённость и загазованность; уровни шума, вибрации, инфразвуковых колебаний, ультразвука, статического электричества, электромагнитных излучений, напряженности электрического и магнитных полей; опасный уровень напряжения в электрической цепи, замыкание которой может произойти через тело человека; естественная и искусственная освещенность; яркость света; прямая и отражённая блескость; пульсация светового потока; контрастность; уровень ультрафиолетовой и инфракрасной радиации (рис. 5).

Общая характеристика техногенных опасностей

 

Рис. 5. Параметры основных физических факторов техносферы

Группа химических факторов подразделяется по характеру воздействия на организм человека-оператора: общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные и влияющие на репродуктивную функцию и по пути проникновения  в организм человека: через дыхательные пути, пищеварительную систему и кожный покров.

Группа биологических факторов включает биологические объекты, воздействие которых на работающих вызывает травмы или заболевания: микроорганизмы (бактерии, вирусы, спирохеты, грибы, простейшие и др.), микроорганизмы (растения и животные).

Группа психофизиологических факторов по характеру воздействия подразделяются на следующие подгруппы: физические перегрузки (статические и динамические), гиподинамию, нервно-психические перегрузки (умственное перенапряжение и перенапряжение анализаторов, монотонность труда, эмоциональные перегрузки).

Техногенные аварии чаще происходят в угольной, нефтегазовой, химической и металлургической отраслях промышленности, геологоразведке, на объектах котлонадзора, на транспорте, а также газового и подъёмно-транспортного хозяйства. Наибольшую опасность представляют аварии и катастрофы на объектах ядерной энергетики и химического производства.

Обеспечение нормального микроклимата и воздушной среды на производстве.
 Комфортное состояние производственной среды определяется оптимальными показателями микроклимата по ГОСТ 12.1.005-88 «ССПТ. Общие санитарно-гигиенические требования к воздуху рабочей среды», СанПиН 2.2.4.584-96 и соблюдением нормативных требований к освещению по СанПиН 23-05-95. Параметры микроклимата в рабочей зоне должны соответствовать оптимальным (зона наивысшего комфорта) или допустимым микроклиматическим условиям (некомфортная зона). В зоне наивысшего комфорта обеспечивается нормальное функционирование организма человека без напряжения механизмов терморегуляции. В некомфортной зоне (при допустимых микроклиматических условиях) возможно, некоторое напряжение системы терморегуляции без нарушения здоровья человека.

Параметры температуры, относительной влажности, объёмов обмена и скорости движения воздуха нормируются с учётом тяжести физического труда: лёгкая, средняя и тяжёлая работа. Для контроля параметров микроклимата используются приборы: термометры, термограф и парный термометр; актинометр при замерах напряженности излучений; психрометр или гидрограф при измерении относительной влажности; анемометр или кататермометр для замеров скорости движения воздуха. Вышеуказанные параметры микроклимата производственной среды обеспечиваются путём применения промышленной вентиляции и отопления.

Вентиляция – это организованный воздухообмен, обеспечивающий удаление загрязнённого воздуха и подачу вместо него свежего воздуха.

Вентиляция может быть естественной и механической, что зависит от способа перемещения воздуха. При естественной вентиляции перемещение воздушных масс осуществляется благодаря разности давлений снаружи и внутри здания. От величины объёма вентилируемого помещения различают общеобъёмную и местную вентиляцию. Общеобъёмная вентиляция обеспечивает удаление воздуха из всего объёма помещения. Местная вентиляция обеспечивает замену воздуха в месте его загрязнения. По способу действия различают вентиляцию приточную, вытяжную и приточно-вытяжную, а также аварийную. Аварийная вентиляция предназначена для устранения загазованности помещения в аварийных ситуациях.

При механической вентиляции воздух подаётся в производственные помещения или удаляется из них по системам вентиляционных каналов с использованием специальных механических побудителей (вентиляторов). Системы механической вентиляции также подразделяются на общеобменные, местные, аварийные и системы кондиционирования. По сравнению с естественной вентиляцией механическая имеет некоторые преимущества: возможность изменять или сохранять необходимый воздухообмен независимо от температуры наружного воздуха и скорости ветра; имеет большой радиус действия; подвергать вводимый в помещение воздух предварительной очистке, увлажнению или осушке, охлаждению и подогреву; улавливать вредные выделения непосредственно на местах их образования; очищать загрязнённый воздух перед выбросом его в атмосферу.

В качестве недостатка механической вентиляции необходимо указать высокую стоимость её сооружения и эксплуатации, а также необходимость проведения мероприятий по снижению шума.

К вентиляции независимо от её типа предъявляются следующие общие требования: объём приточного воздуха должен равняться объёму вытяжного воздуха; элементы системы вентиляции должны быть правильно размещены в помещении; потоки воздуха не должны поднимать пыль и не должны вызывать переохлаждения работающих; шум от системы вентиляции не должен превышать ПДУ.

Потребный воздухообмен, то есть объём  воздуха помещения, заменяемый в единицу времени L (м/ч) определяется в соответствии со СНиП 2.04.05-86 расчётным путём из условий удаления из воздуха помещения избыточных вредных веществ, теплоты и влаги[10]:

1) при выделении в воздух помещения вредных веществ:

L = Lрз + [М - Lрз (Срз - Сп)] / (Сух - Сп),                         (4)

где Lрз – количество воздуха, удаляемого местной вентиляцией, м/ч; Мколичество вредных веществ, поступающих в помещение, мг/м; Срз, Сп, Сух соответственно концентрация вредных веществ в воздухе, удаляемом местной вентиляцией, подаваемом в помещение и уходящем из него, мг/м;

2) при удалении избыточной явной теплоты, повышающей температуру воздуха:

L = Lрз + [3,6Он – 1,2Lрз (Трз - Тп)] / 1,2(Тух - Тп),          (5)

где Он избыточная явная теплота в помещении, Дж/с;

Трз, Тп, Тух соответственно температура воздуха, удаляемого местной вентиляцией, подаваемого в помещение и уходящего из него, 0С;

3) при удалении избытка влаги:

L = Lрз + [W – 1,2Lрз (dрз - dп)] / 1,2(dух - dп),                 (6)

где W избыток влаги в помещении, г/ч; dрз, dп, dухсоответственно влагосодержание воздуха, удаляемого местной вентиляцией, подаваемого в помещение и уходящего из него, г/кг.

При расчёте механической вентиляции, кроме определения конфигурации вентиляционной системы с учётом плана производственного помещения, устанавливается:

1. Величина проходного сечения воздуховодов  (F), скорость движения воздуха (V) в воздуховодах принимается  6-10 м/с:

F = L / (3600V),                                                               (7)

где – L – потребный воздухообмен, м/ч.

2. Потери давления в воздуховодах на участке воздуховода (Pобщ j):

Pобщ j = Pтр j + Pм j ,                                                                      (8)

где Pтр j – сопротивление на преодоление сил трения воздуха при перемещении по воздуховодам; Pм j – местное сопротивление воздуховодов.

Общие потери в сети воздуховодов (Pобщ) составят сумме потерь на всех участках воздуховодов (j).

3. Полное давление (Р), которое должно создаваться вентилятором, принимается Р =  Pобщ, а производительность вентилятора (G, м/ч) G = L.

4. Потребная мощность электродвигателя вентилятора (N):

N = G р К / (3,6 . 106 qб qр),                                                         (9)

где К – коэффициент запаса мощности электродвигателя (1,05-1,5);  р – потери полного давления в сети, Па; qб, qр – КПД вентилятора и передачи от электродвигателя к вентилятору.

Расчёт естественной вентиляции осуществляется в соответствии со СНиП 2.04.05-86 и заключается в определении площадей вентиляционных проёмов здания, он включает следующие этапы:

 

1. Устанавливается направление движения воздуха с учётом типовых рекомендаций и расчётная схема параметров (рис. 6).

 

2.      Определение скорости движения воздуха (v, м/с) в нижнем проёме:

v = Общая характеристика техногенных опасностей[h(ун - ув)g / рн ],                                                      (10)

где h – расстояние между центрами нижнего и верхнего проёмов, м;

ун , ув соответственно плотность наружного и внутреннего воздуха,  кг/м.

3. Определение площади (F1, м2) нижних вентиляционных проёмов:

F1 = L/(м1 v 1),                                                                            (11)

где м1 коэффициент расхода воздуха через нижние проёмы, равный 0,15 – 0,65.Общая характеристика техногенных опасностей

4. Определение потери давления (Н1, Па) в нижних проёмах:

Н1 = v 12 рн/2.                                                                      (12)

5. Определение избыточного давления (Н2, Па) в верхних проёмах:

Н2 = Нг – Н1,                                                                      (13)

где Нг – гравитационное давление воздуха, Па,

Нг = h(рн – рв)g,                                                                 (14)

6. Определение площади (F2, м2) верхних вентиляционных проёмов:

F2 = L/(м2 v 2) = L/Общая характеристика техногенных опасностей.                                                  (15)

 где м2 -   расхода воздуха через верхние проёмы.

Система отопления в производственных помещения необходима там, где тепловые потери (Qп) превышают выделение теплоты от технологического оборудования (Q). Для обогрева помещений используют воздушные, водяные, паровые, электрические системы отопления.

Кондиционирование воздуха – это автоматическая обработка  воздуха с целью необходимого обеспечения метеорологических условий в помещении, включая температуру, влажность и другие параметры воздушной  окружающей среды.

По видам освещение подразделяется на искусственное, естественное и совмещённое. Освещение в помещениях регламентируется СНиП 23-05-95 в зависимости от характера зрительной работы, системы и вида освещения, фона, контраста объекта с фоном.

 Искусственное освещение создаётся электрическими источниками света (лампы накаливания и газоразрядные лампы) и применяется в темное время суток. Искусственное освещение бывает общим (равномерное освещение всего помещения), локализованным (расположение источников света с учётом размещения рабочих мест), комбинированным (сочетание двух первых видов). Кроме того, предусматривается аварийное освещение (используется при внезапном отключении рабочего освещения).

Естественное освещение в зависимости от расположения световых проёмов (фонарей) может быть верхним, боковым и комбинированным. По функциональному назначению этот вид освещения подразделяют на рабочее, аварийное и специальное, которое, в свою очередь, может быть дежурным, охранным, эвакуационным, бактерицидным и др.

Совмещённое освещение используется  при выполнении работ наивысшей точности и когда недостаточное по нормам естественное освещение дополняется искусственным.

По конструктивному исполнению осветительные установки должны быть просты и удобны в эксплуатации, долговечны, отвечать требованиям технической эстетики и электробезопасности. Необходимо применять защитное заземление или зануление, ограничивать напряжение питания местных и переносных светильников, защищать элементы осветительных сетей от механических повреждений.

В производственных помещениях освещённость должна быть не менее 150 лк, в учебных кабинетах, аудиториях и лабораториях уровень освещённости на рабочих местах – не менее 300 лк, непосредственно на классной доске 500 лк. Аварийное освещение внутри здания должно быть не менее 2 лк. Минимальная норма освещения на полу основных проходов, на лестничных площадках, а также охранного освещения должна быть не менее 0,5 лк. Величина освещенности контролируется люксметром.

При расчёте искусственного производственного освещения необходимо выбрать тип источника света, систему освещения, вид светильника, определить число светильников и мощность ламп. Для расчёта равномерного освещения применяется метод коэффициента использования светового потока, а при расчёте освещённости общего локализованного и местного освещения применяют точечный метод[11].

В методе коэффициента использования расчёт светового потока (F, лм) источника производится по формуле:

F = Eн SZKз / (nqн),                                                                (16)

Eн – нормативная освещённость, лк;

S – площадь освещаемого помещения, м2 ;

 Z – коэффициент неравномерности освещения, обычно Z = 1,1…1,2;

Kз – коэффициент запаса, зависящий от технологического процесса и типа применяемого источника света, Kз = 1,3…1,8;

n – число светильников в помещении;

qн – коэффициент использования светового потока.

Коэффициент использования светового потока определяется  в зависимости от индекса помещения (i) и коэффициента отражения потока, стен и пола (р) по специальной таблице.

Индекс помещения рассчитывается по формуле:

i = АВ / [Н(А+В)],                                                                          (17)

где А и В – соответственно длина и ширина помещения в плане, м;

Н – высота подвеса светильников над рабочей поверхностью, м.

При расчёте освещённости общего локализованного и местного освещения применяют точечный метод. В основу расчёта положено уравнение:

ЕА = IОбщая характеристика техногенных опасностей cosОбщая характеристика техногенных опасностей/ r2 (лк),                                                 (18)

ЕА – освещённость горизонтальной поверхности в расчётной точке А;

IОбщая характеристика техногенных опасностей - сила света в направлении от источника к расчётной точке А;

Общая характеристика техногенных опасностей - угол, образованный нормалью к освещаемой поверхности и падающим на поверхность лучём в точке А; r – расстояние от светильника до точки А, м.

Естественное освещение обеспечивается через световые проёмы  и зависит от многих объективных факторов: времени года и дня, географического положения, погоды и др. Основной характеристикой естественного освещения служит коэффициент естественного освещения (КЕО, обозначается через «е»), определяется как отношение естественной освещенности внутри здания (ЕВ) к одновременно измеренной наружной освещенности горизонтальной поверхности (ЕН):

е = ЕВ / ЕН,                                                                                    (19)

При определении потребных площадей световых проёмов используются зависимости:

а) для бокового освещения (площадь окон):

So = Sп eн hо K /  Общая характеристика техногенных опасностейor1100,                                                           (20)

б) для верхнего освещения (площадь световых фонарей):

Sф = Sп eн hф /  Общая характеристика техногенных опасностейor2100,                                                               (21)

где  Sп – площадь пола, м2; eн – нормированное значение КЕО;

hо,hф – соответственно световая характеристика окон и световых фонарей;

К – коэффициент затенения окон противоположными зданиями;

r1, r2 – коэффициенты, учитывающие повышение КЕО при боковом и верхнем освещении благодаря свету, отражённому от поверхностей помещения;

Общая характеристика техногенных опасностейо – общий коэффициент светопропускания светопроёмов.

В производственной среде цветовое оформление оборудования и помещения используется как средство информации и ориентации, как фактор психологического комфорта и как композиционный элемент.

При выборе цвета, цветовом оформлении интерьера нужно руководствоваться указаниями по рациональной цветовой отделке поверхностей производственных помещений и технологического оборудования ГОСТ 26568-85 и ГОСТ 12.4.026-76 ССБТ.

Согласно  ГОСТ 12.4.026-76 «Цвета сигнальные», красный цвет должен использоваться для предупреждения о явной опасности, запрещении, жёлтый предупреждает об опасности, обращает внимание, зелёный цвет означает предписание, безопасность, синий информацию. В жёлтый цвет окрашиваются тележки электрокары, подъёмные механизмы жёлтыми полосами на чёрном фоне, противопожарное оборудование окрашивается в красный цвет. В различные цвета окрашиваются трубопроводы, баллоны: воздухопроводы в голубой, воздухопроводы для технической воды в чёрный, маслопроводы в коричневый, баллоны для кислорода в голубой, баллоны для углекислого газа в чёрный. Этим же ГОСТом введены знаки безопасности: запрещающие – красный круг с белой полосой; предупреждающие – жёлтый треугольник с нанесённой на ней опасностью; предписывающие – зелёный круг, внутри которого помещён белый квадрат с предписывающей информацией; указательные – синий прямоугольник с белым квадратом в середине.

Эргономика – (с греческого означает «эргон» - работа, «номос» - закон) научная дисциплина, изучающая функциональные  возможности человека в трудовых процессах, связанной с использованием машин с целью создания для него оптимальных условий труда в системе ЧМС. С целью обеспечения оптимальных условий труда необходим комплексный подход ко всей системе ЧМС, поэтому эргономичность техники является наиболее обобщенным показателем свойств среди других показателей техники.

Инженерная психология – научная дисциплина, исследующая закономерности информационного взаимодействия человека и техники для проектирования, создания и эксплуатации системы ЧМС. Инженерная психология изучает процессы приема, хранения, переработки реализации информации человеком. С учётом закономерностей психических, психофизиологических процессов и свойств человека она определяет требования к техническим системам (машинам) и построению систем ЧМС, а также требования к свойствам человека-оператора.

В числе обобщенных показателей деятельности оператора и систем ЧМС инженерная психология использует эффективность, надежность, точность, быстродействие.

Научную базу знаний эргономики составляют анатомия, физиология и психология, а анатомия, в свою очередь, составляет теоретическую основу антропометрии и биомеханики.

Антропометрия - осуществляет измерение человека, что позволяет получить данные, необходимые для правильного расположения органов управления и определения размеров рабочих пространств. Важным моментом при этом является определение границ колебаний размеров, в которых учитывается потребный объем выборки, выражаемый в перцентилях (сотая доля объёма измерений совокупности людей, которой соответствует определённое значение антропометрического признака). Так, 90-й перцентиль представляет результаты измерений, показывающих, что 90% измеряемой группы имеют определенные размеры меньше, а 10% больше средних для данной группы. Так на практике любая конструкция рассчитывается на 90% населения.

Биомеханиказанимается  изучением приложения сил телом  человека и даёт рекомендации по эффективному приложению силы: усилие должно создаваться массой тела, а не мышц; наиболее полно должны использоваться мышцы, передвигающие сустав вокруг его центрального участка.

Физиология в эргономике позволяет сформулировать закономерности процесса воспроизводства энергии организмом человека. Вырабатываемая энергия организмом оценивается по потреблению им кислорода (О2) через вдыхаемый  воздух. Психология вносит в эргономику теорию деятельности человека, основанную на информационной модели человека-оператора; теорию обучения и теорию организации, связанную с проектированием выполняемой работы.

Особенности нормирования опасных факторов в бытово…

Особенности нормирования опасных факторов в бытовой среде.

Главной особенностью бытовой среды является её химическая загрязнённость. По данным института Склифосовского ежегодно от химических...

Нормализация зрительных условий труда.

Освещение   является  одним из важнейших факторов, воздействующим на организм человека, а...

Добавить комментарий



Анти-спам: выполните задание
Яндекс.Метрика